Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 8395, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600099

ABSTRACT

The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.


Subject(s)
COVID-19 , Oxygen , Humans , Oxygen/metabolism , Microcirculation , Nitric Oxide , Oximetry/methods , Retinal Vessels , Perfusion , Blood Proteins , Lipids
2.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37631064

ABSTRACT

Glaucoma is a leading cause of irreversible blindness worldwide. To date, intraocular pressure (IOP) is the only modifiable risk factor in glaucoma treatment, but even in treated patients, the disease can progress. Cannabinoids, which have been known to lower IOP since the 1970s, have been shown to have beneficial effects in glaucoma patients beyond their IOP-lowering properties. In addition to the classical cannabinoid receptors CB1 and CB2, knowledge of non-classical cannabinoid receptors and the endocannabinoid system has increased in recent years. In particular, the CB2 receptor has been shown to mediate anti-inflammatory, anti-apoptotic, and neuroprotective properties, which may represent a promising therapeutic target for neuroprotection in glaucoma patients. Due to their vasodilatory effects, cannabinoids improve blood flow to the optic nerve head, which may suggest a vasoprotective potential and counteract the altered blood flow observed in glaucoma patients. The aim of this review was to assess the available evidence on the effects and therapeutic potential of cannabinoids in glaucoma patients. The pharmacological mechanisms underlying the effects of cannabinoids on IOP, neuroprotection, and ocular hemodynamics have been discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...